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In Table 4 theoretical values in Tables 1 and 2 are 
compared with experimental values of V~. Agreement 
is satisfactory in most cases. Exceptions at V~ may be 
due to theoretical assumptions about the minimum 
scattering wave vector while slight deviations at V~ 
may be partly explained on the experimental side, 
where evaluation is rendered difficult by complica- 
tions such as, for instance, many-beam effects. 
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The Dynamical Scattering Amplitude of an Imperfect Crystal 
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A formal expression for the X-ray dynamical scattering amplitude of an imperfect crystal is obtained. 
The resultant expression includes the dynamical line broadening effect on the diffracted X-rays caused 
by imperfections. The effects due to absorption in the crystal are also taken into account. 

1. Introduction 

In studying the problems of diffraction by crystals it is 
desirable to have a dynamical solution for diffracted 
beams because, even under a single Bragg condition, 
there are strong interactions between the crystal elec- 
trons and the beams. When the crystal is perfect, one 
uses the two-wave approximation to derive an approx- 
imate dynamical solution for a single Bragg reflection. 
When an incident beam satisfies several Bragg condi- 
tions simultaneously, one needs to employ 'more than 
two'-wave approximations which are sometimes only 
solvable by numerical computations. 

There is no true dynamical theory for diffraction 
unless the multiple interaction is correctly treated. Since 
difficulty is encountered in obtaining dynamical solu- 
tions for a perfect crystal, greater difficulty is expected 
in seeking completely dynamical solutions for an im- 
perfect crystal. 

In electron diffraction where the multiple scattering 
is essential, a formal theory of dynamical diffraction 
has been formulated by Niehrs (1959a, b) and Fujimoto 
(1959, 1960). In this theory the scattering amplitude 
is completely dynamical in form. In practice, it is ad- 
mittedly tedious to calculate the scattering amplitude 
to a great degree of accuracy. Nevertheless this am- 
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plitude can be calculated to a far higher degree of ac- 
curacy than the two-or many-wave approximations. 
This is possible because the two or the solvable many- 
wave approximations are the zero order approxima- 
tions in this scattering amplitude. In this sense the 
scattering amplitude is useful although this is indeed 
formal. 

By contrast, in X-ray diffraction from a perfect 
crystal, a single Bragg reflection condition is valid in 
general and the many-beam approximations are not 
indispensable. Therefore, there has not been so far an 
immediate need for a completely dynamical expression 
for the scattering amplitude in X-ray diffraction. How- 
ever, when one considers the X-ray diffraction prob- 
lems for an imperfect crystal the situation becomes 
entirely different. Even though a single Bragg reflection 
condition is satisfied by an incident wave, the diffracted 
wave can propagate in any direction. In reality, it prop- 
agates mostly in directions around the transmitted and 
the Bragg diffracted directions (Kuriyama, 1968a, b). 
In other words, the diffracted (including the transmitted 
direction) beams have line broadening around the 
propagation directions expected from a perfect crystal. 
This situation implies that there are many beams sim- 
ultaneously scattered from the imperfect crystal. If 
one wishes to have a dynamical theory for an imperfect 
crystal, then one has to seek as good a solution for a 
multiple interaction problem as in electron diffraction. 

In the present paper a formal solution for dynamical 
diffraction from an imperfect crystal is obtained. Un- 
like the electron diffraction theories mentioned before, 
the present formulation is derived for a crystal in which 
there is absorption of the scattered X-rays. In an im- 
perfect crystal it is always essential to take into account 
this effect. 

2. A formal expression for 
the dynamical scattering amplitude 

Two basic equations for X-ray diffraction by a crystal 
are the scattering amplitude and the photon Green's 
function equations. The scattering amplitude for an 
X-ray beam striking a crystal at R with momentum k 
to make a transition to the state of momentum k' 
emerging at R' is given (Ashkin & Kuriyama, 1966) by 

(k'R'[ S[kR) = ~d3p'~d3pA*(k', p'; R')S(p', p)A (k, p;R),  
(2.1) 

where A is the Fourier transform of the free photon 
wave packet depending on a parameter R which indi- 
cates the spatial location for the maximum intensity. 
Throughout this paper, only a scalar field is treated in 
order to avoid unnecessary complications. The thory 
for X-ray fields is the same except for the polarization 
factors. The quantity S(p',p) is the scattering matrix 
element and is given (Kuriyama, 1967a, b) by 

S(p' ,p)=a(p'--p)+il  d4xl f d4x2z*.(xl)zp(x2) S 
crystal 

do) d3ka d3k2 
x ~Z--I I [(k~-o)2)(k ~ 

- o)2)D(k~, k2; co) - 4~r(2r03(k ~ - o)2)a(k 1 

- k2)] x exp [iklrl - ik2r2 - io)(tl - t2)], (2.2) 

where 

Zv(x)=[2(2rc)34rc]p[]l/2 exp [i(p. r - l P l t ) ] .  (2.3) 

The quantity D(kbkz; co) is the Fourier transform of 
the photon Green's function and satisfies the photon 
Green's function equation (Kuriyama, 1967a, b): 

(k~-°)2)D(k"k2;c°)-  f d3p F(kl,p;o))D(p, k2;w) 

= 4~(2n)3fi(kl - kz), (2"4) 

where F(kl,k2;eg) is the Fourier transform of the gen- 
eralized polarizability of the crystal. 

When the atoms in the crystal are displaced from 
their positions in the perfect crystal, the Fourier trans- 
form of the generalized polarizability is given (Kuri- 
yama, 1967a) by 

F(kb k2; co) = g(kl - k2))'(kl, k2; 0)), (2.5) 

where g (k l -kz )  is the geometrical structure factor for 
the crystal and is defined by 

g(kl -k2)  = Ve X exp [ -  i (k l -kz )R. ] .  (2.6) 
l 

The Fourier transform of the polarizability of 'atomic' 
electrons in the unit cell is denoted by ))(kbk2;o)). The 
quantity Ve is the unit-cell volume and R~ the atomic 
position displaced by u~ from the ideal lattice site I. 
The crystal contains N atoms. 

For the present purpose it may be assumed without 
loss of generality (see 3) that the atomic displacement 
can be expressed by 

!11 = Aq sin (q. i -  q~q). (2.7) 

Then, (2.6) reduces to 

where 

t o o  

g({) = NVe ,S Cn({)A<3)({ + nq) , (2.8) 
n ~  - - o o  

Cn({)=Jn({ . Aq) exp [inC, q] , (2.9) 

and Ao) is the generalized Kronecker delta, being unity 
when g+nq  is equal to a reciprocal lattice vector K 
defined in the perfect reference crystal, and otherwise 
being almost zero. When the size of the crystal is in- 
finite, this function becomes the delta function as fol- 
lows: 

NVeA(3)({+nq)=(21r) 3 Z" f i ( { + n q - K ) .  (2.10) 
K 
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To simplify notations it is assumed further that 

y(k,,kz; o9) = y(k, - kz; o~). (2.11) 

The Fourier transform of the generalized polarizability 
for an infinite crystal is then written 

F(k,,k2;co) =(2n) 3 Z Z yn(kl -  kz)J(kl-k2 + n q - K ) ,  
K n 

(2.12) 
where 

y n ~ - k z ) = C n ( k l - k z ) y ( k l , k z ; o g )  . (2"13) 

By substitution of (2.12), the photon Green's function 
equation (2.4) reduces to 

(k~-o~)D(kx,k2;m)-  Z Z ? n ( a -  n q ) D ~ l  +nq 
J n 

- a ,  kz ;o9)= 4.(2~pa0q-k2), (2.14) 

where, instead of K, J is used to represent a reciprocal 
lattice vector. Equation (2-14) gives a set of inhomo- 
geneous simultaneous equations since (2.14) is valid 
for any value of kl (for instance, ka = kl + m q -  I, where 
m is an integer and I is a reciprocal lattice vector). 
This set of simultaneous equations can therefore be 
written in a matrix form 

MO=E,  (2.15) 

where D and E are column matrices given by 

Dna = D(kl + nq - J, k2; o9) (2.16) 
and 

Ena = 4 n ( 2 n ) 3 J ( k x + n q - a - k 2 )  . (2.17) 

The matrix M is given by 

[M(ka ; m)]ml, na =[(kl + m q -  I)2-m2]Jm, nJI,a 
- y n - m ( J - I - ( n - m ) e t )  . (2"18) 

The solution of equation (2.15) is thus given by 

D = M - ~ . E ,  (2.19) 

where M- '  is the inverse matrix of M. In components 
(2.19) is written 

Drat = 4~z(2n) 3 S S [M-l(kl ; ag)]mi, na J(kl 
n J 

+ n q -  J -  k2). (2.20) 

This is a set of dynamical solutions of the photon 
Green's function for the imperfect crystal of infinite 
size. The same basic principle as in the theory for a 
perfect crystal (Ashkin & Kuriyama, 1966) is adopted 
here in calculating the scattering amplitude of a finite 
crystal. The principle is that an accurate treatment of 
the scattering by a finite crystal should be obtained by 
using the dynamical solution of the photon Green's 
function for an infinite crystal in conjunction with the 
modified 'contraction' formula of the scattering am- 
plitude. 

The scattering matrix element can now be calculated 
by (2.2)with D(kl,k2;o9) substituted by 1)oo in (2.20). 
The scattering matrix element will be evaluated for an 
imperfect crystal plate of limited dimension in one di- 
rection and of infinite dimension in the remaining two 
orthogonal directions. For convenience the origin of 
the coordinate system is chosen on the entrance face 
of the crystal and the z axis along the direction of finite 
extent of the crystal. The crystal occupies the region 
between z = 0  and z = L ,  where L is the crystal thick- 
ness. The projection of a vector onto the crystal surface 
is described by a subscript t. The Laue geometry is 
considered explicitly. Furthermore, it is assumed 
that the reciprocal lattice vectors I and J belong 
to a set of the reciprocal lattice points which nearly 
satisfy Bragg conditions simultaneously. For such I or 
a it follows that kl,  z -4- m q z -  Iz ~n"  * ~ / 4  z .  

With this choice of coordinates, (2.2) reduces to 

where 

i 
S(p',p) = g ( p ' - p ) +  ~ O(Ip'l- IPl) Z a(pt 

n,  J 

- n q ~ + & - p ~ )  x[{1 + exp [i(pz 

- n q z +  J z - p ; ) L ] } t o -  exp [ - i ( n q z  

- J z + p ; ) L ] t + -  exp [ipzL]t-] , (2.21) 

f + :  [M- (pz, k z - n q z  
dkz  

t±=(2pz)  _ 2n- {(2p;) 1 , 

+ Jz; Ipl)]oo,,a - (kz  

-pz ) - l J ,  a,oo} exp [ + ikzL] ,  (2-22) 

and to is given by (2.22) with L = 0 .  The integrand of 
to decreases more rapidly than (kz) -1 as kz approaches 
infinity. Therefore, the integrals to and t .  are given by 
their residues. 

To evaluate the residues, it is convenient to rewrite 
the matrix M, (2.18), in such a way that the matrix 
element is given by a sum of two terms, one of which 
is independent of kz. For the reciprocal lattice vectors 
I and J of interest,* the matrix element of M is given by 

[M(p~,kz- nqz+ J.; Ipl)].a,~a =[M o(9')].a,.a 
g • 

+ 2p,(ka-p,)fi , ,a. ,a , 
where 

[M o(P')l,a,,a =[(P' + m q -  1)2- (p')216.a,.a 

- Y n - m O  - I - ( n  - m)q). 

(2.23) 

(2.24) 

The inverse matrix M -1 is now written 

* To avoid unnecessary mathematical complications, the 
nearly symmetrical reflection condition is being treated. For 
an asymmetrical reflection, a transformation on M is needed, 
resulting in Mo, (2'24), replaced by MoO -2, where OmbnJ 
= [(p'z - mqz + Iz)/p'z]I/2~mhnJ. 
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M - '  =(Mo + 2p;(k,-p;)l)-* 

+~ ( -Mo)m 
= X 

m = o  (2p;)~+~(k~--p;)~+~ ' 
(2.25) 

where I is the identity matrix. Since Mo is independent 
of kz, the integrals to and t± reduce to 

1 
t±=(2pz) exp [ + i(nqz-Jz)L]Xm (2P'z)m [(--~]]°)m]°O'nJ 

fd [ ,  oo< oo] 
x ~ -(k ' - i e )  m+l - k - p z - i e  - - P z  

x exp [+ ikL], (2.26) 

and similarly to is given without the exponential fac- 
tors. Here e is an infinitesimally small number. These 
integrals are easily evaluated to give 

i 
S (p ' , p ) - -d (p ' -p )+  ~-p(. d(lp'l 

-Ipl )  27 d(pt-  nqt + J t -  p;) 

1 -iMToL]m ] 
×(- i ) (2pz)  [Smm ~ [(  ~ / oO,,,a 

-d,,a ,oo. (2"27) 

Two useful identity equations are 

and 

~' 1 A m = exp A 2:~7 
m = o  

(2.28) 

1 1 
21p---i- d(lp '[-  [pl)fi(P; - P0-- ~p;~=z d (P ' -  p)" (2.29) 

Equation (2.27) thus reduces to the desired result1" 

S(p', p )=  (pz/lpl)f i( lp'l  - Ipl) ~ f i ( p t -  nqt + J t -  P;) 
n J  

L, Mo(p)}loO,.j x [ exp { - i - ~ -  (2.30) 

The assumption that the atomic displacement u~ is 
given by (2.7) is not needed at all. 

In general, the atomic displacement vectors are given 
by a superposition of (2.7) over various q's. Although 
the expression of g(kx-kz) becomes complicated, it is 
still true to write g(kx-k2) in the form shown in (2.8). 
Any given function f (x)  can be defined by 

f(x)=gx(y)dx, u= X gx(Y)dz, u (3"1) 
Y 

where d is the Kronecker delta and gx is a function 
of y which takes on the value off(x)  at y = x and can 
be arbitrary elsewhere. This is exactly the form ob- 
tained in (2.8) if nq is considered to be a parameter 
like y, while I and J are chosen so that they can satisfy 
the assumption (1). It is therefore concluded that the 
final result of S(p',p) is always valid regardless of the 
form of u~. 

Since no restrictions have been imposed on the 
property of the matrix M (for instance, M is not neces- 
sarily Hermitian), the absorption effect has been taken 
into account. The scattering amplitude of an imperfect 
crystal for an incoming wave of finite size (spherical 
wave) is given by (2.1) with the scattering matrix 
element (2.30). Since all the dynamical interactions 
have been built into (2.30), this resultant scattering 
amplitude is dynamical in form. 

When the crystal is perfect, this scattering amplitude 
becomes identical to the formal dynamical expression 
given by Niehrs (1959a, b) and Fujimoto (1959, 1960); 
it gives nonvanishing values only in the transmitted 
and the Bragg diffracted directions, and vanishes else- 
where. When the crystal is imperfect, the obtained scat- 
tering amplitude gives non-vanishing values not only 
in the transmitted and Bragg diffracted directions, but 
also in any direction, because the quantity nq can be 
considered to be a continuous variable. This implies 
that the resultant expression for the scattering ampli- 
tude includes the dynamical line broadening effect due 
to imperfections (Kuriyama, 1967a, 1968a). 

3. Conclusion:and discussion 

In deriving (2.30) several approximations have been 
used. Among them are (1) that the reciprocal vectors 
I and J of our interest should lie very close to the 
Ewald sphere, and (2) that the polarizability }'(kl, k2;eo) 
of the 'atomic' electrons should be independent of k2, z. 
Both of these assumptions are indispensable at present. 

"{" For an asymmetrical reflection, Mo is replaced by MoO -2. 
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